A Local Minimum Energy Condition of Hexagonal Circle Packing

نویسندگان

  • Kanya Ishizaka
  • KANYA ISHIZAKA
چکیده

A sufficient condition for the energy of a point such that a local minimum of the energy exists at every triangular lattice point is obtained. The condition is expressed as a certain type of strong convexity condition of the function which defines the energy. New results related to Riemann sum of a function with such the convexity and new inequalities related to sums on triangular lattice points are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigidity of Infinite (circle) Packings

The nerve of a packing is a graph that encodes its combinatorics. The vertices of the nerve correspond to the packed sets, and an edge occurs between two vertices in the nerve precisely when the corresponding sets of the packing intersect. The nerve of a circle packing and other well-behaved packings, on the sphere or in the plane, is a planar graph. It was an observation of Thurston [Thl, Chap...

متن کامل

Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks

The Minimum Energy Broadcast problem consists in finding the minimum-energy range assignment for a given set S of n stations of an ad hoc wireless network that allows a source station to perform broadcast operations over S. We prove a nearly tight asymptotical bound on the optimal cost for the Minimum Energy Broadcast problem on square grids. We emphasize that finding tight bounds for this prob...

متن کامل

Revisiting the Hexagonal Lattice: on Optimal Lattice Circle Packing

In this note we give a simple proof of the classical fact that the hexagonal lattice gives the highest density circle packing among all lattices in R2. With the benefit of hindsight, we show that the problem can be restricted to the important class of well-rounded lattices, on which the density function takes a particularly simple form. Our proof emphasizes the role of well-rounded lattices for...

متن کامل

Curved Hexagonal Packings of Equal Disks in a Circle

Abstract. For each k ≥ 1 and corresponding hexagonal number h(k) = 3k(k + 1)+ 1, we introduce m(k) = max{(k − 1)!/2, 1} packings of h(k) equal disks inside a circle which we call the curved hexagonal packings. The curved hexagonal packing of 7 disks (k = 1, m(1) = 1) is well known and one of the 19 disks (k = 2, m(2) = 1) has been previously conjectured to be optimal. New curved hexagonal packi...

متن کامل

Iterated Tabu Search Algorithm for Packing Unequal Circles in a Circle

This paper presents an Iterated Tabu Search algorithm (denoted by ITSPUCC) for solving the problem of Packing Unequal Circles in a Circle. The algorithm exploits the continuous and combinatorial nature of the unequal circles packing problem. It uses a continuous local optimization method to generate locally optimal packings. Meanwhile, it builds a neighborhood structure on the set of local mini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007